On rapid idempotent ultrafilters

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent Ultrafilters and Polynomial Recurrence

In the thirty or so years since H. Furstenberg reproved Szemerédi’s theorem using methods from ergodic theory, many striking discoveries have been made in the area now known as Ergodic Ramsey theory. Perhaps the most surprising of these is the discovery that recurrence results can be obtained for polynomial sets, meaning sets of values of polynomials. The following pretty theorem, a special cas...

متن کامل

Idempotent Ultrafilters, Multiple Weak Mixing and Szemerédi’s Theorem for Generalized Polynomials

It is possible to formulate the polynomial Szemerédi theorem as follows: Let qi(x) ∈ Q[x] with qi(Z) ⊂ Z, 1 ≤ i ≤ k. If E ⊂ N has positive upper density then there are a, n ∈ N such that {a, a+q1(n)−q1(0), a+qk(n)−qk(0)} ⊂ E. Using methods of abstract ergodic theory, topological algebra in βN, and some recently-obtained knowledge concerning the relationship between translations on nilmanifolds ...

متن کامل

ON SOFT ULTRAFILTERS

In this paper, the concept of soft ultrafilters is introduced and some of the related structures such as soft Stone-Cech compactification, principal soft ultrafilters and basis for its topology are studied.

متن کامل

Nonregular ultrafilters on ω2

We obtain lower bounds for the consistency strength of fully nonregular ultrafilters on ω2.

متن کامل

On Milliken-Taylor Ultrafilters

We show that there may be a Milliken-Taylor ultrafilter with infinitely many near coherence classes of ultrafilters in its projection to ω, answering a question by López-Abad. We show that k-coloured Milliken-Taylor ultrafilters have at least k + 1 near coherence classes of ultrafilters in its projection to ω. We show that the Mathias forcing with a Milliken-Taylor ultrafilter destroys all Mill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Semigroup Forum

سال: 2014

ISSN: 0037-1912,1432-2137

DOI: 10.1007/s00233-014-9598-8